Effect of N-source on soybean leaf sucrose phosphate synthase, starch formation, and whole plant growth.

نویسندگان

  • P S Kerr
  • S C Huber
  • D W Israel
چکیده

Soybeans (Glycine max L. Merr. cv Tracy and Ransom) were grown under N(2)-dependent or NO(3) (-)-supplied conditions, and the partitioning of photosynthate and dry matter was characterized. Although no treatment effects on photosynthetic rates were observed, NO(3) (-)-supplied plants in both cultivars had lower starch accumulation rates than N(2)-dependent plants. Leaf extracts of NO(3) (-)-supplied plants had higher activities of sucrose phosphate synthase (SPS) and cytoplasmic fructose-1,6-bisphosphatase (FBPase) than N(2)-dependent plants. The variation in starch accumulation was correlated negatively with the activity of SPS, but not the activity of FBPase, UDP-glucose pyrophosphorylase, or ADP-glucose pyrophosphorylase. These results suggested that starch accumulation is biochemically controlled, in part, by the activity of SPS. Leaf starch content at the beginning of the photoperiod was lower in NO(3) (-)-supplied plants than N(2)-dependent plants in both cultivars which suggested that net starch utilization as well as accumulation was affected by N source.Total dry matter accumulation and dry matter distribution was affected by N source in both cultivars, but the cultivars differed in how dry matter was partitioned between the shoot and root as well as within the shoot. The activity of SPS was correlated positively with total dry matter accumulation which suggested that SPS activity is related to plant growth rate. The results suggested that photosynthate partitioning is an important but not an exclusive factor which determines whole plant dry matter distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves.

The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by (14)CO(2) assimilation) in isolated ce...

متن کامل

Changes in Starch Formation and Activities of Sucrose Phosphate Synthase and Cytoplasmic Fructose-1,6-bisphosphatase in Response to Source-Sink Alterations.

Short term experiments were conducted with vegetative soybean plants (Glycine max L. Merr. ;Ransom' or ;Arksoy') to determine whether sourcesink manipulations, which rapidly changed the ;demand' for sucrose and partitioning of photosynthetically fixed carbon into starch, were associated with alterations in activities of sucrose-P synthase and/or cytoplasmic fructose-1,6-bisphosphatase in leaf e...

متن کامل

Phosphorus Nutrition Influence on Starch and Sucrose Accumulation, and Activities of ADP-Glucose Pyrophosphorylase and Sucrose-Phosphate Synthase during the Grain Filling Period in Soybean.

Several lines of evidence indicate that the partitioning of photosynthate between starch and sucrose is influenced by the relative concentrations of inorganic phosphate (Pi) in the cytosol and chloroplast. Two greenhouse experiments were conducted to determine the influence of long-term differences in soil P levels, ranging from deficient to supraoptimum, on leaf starch and sucrose concentratio...

متن کامل

Regulation of photosynthetic carbon metabolism in cucumber by light intensity and photosynthetic period.

The effects of photosynthetic periods and light intensity on cucumber (Cucumis sativus L.) carbon exchange rates and photoassimilate partitioning were determined in relation to the activities of galactinol synthase and sucrose-phosphate synthase. Carbon assimilation and partitioning appeared to be controlled by different mechanisms. Carbon exchange rates were influenced by total photon flux den...

متن کامل

Role of sucrose-phosphate synthase in partitioning of carbon in leaves.

Variations in leaf starch accumulation were observed among four species (wheat [Triticum aestivum L.], soybean [Glycine max L. Merr.], tobacco [Nicotiana tabacum L.], and red beet [Beta vulgaris L.]), nine peanut (Arachis hypogea L.) cultivars, and two specific peanut genotypes grown under different nutritional regimes. Among the genotypes tested, the activity of sucrose phosphate synthase was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 1984